Category Archives: poster

2013 UNH ECE Graduate Student Research Poster Session – a brief review

During the 2012-2013 academic year, I taught the UNH ECE Graduate Seminar (ECE 900), a course I first introduced in the fall of 2002. At the end of the two-semester sequence, students submitted a short research proposal. A new aspect of the course was the 2013 UNH ECE Graduate Student Research Poster Session. In this session students introduced their research proposal in a poster presentation.

The session started with a one-minute madness where students had 60 seconds to entice attendees to visit their posters. In attendance were many UNH ECE faculty, as well as staff and students from the IOL, the OISS, and UNH ECE. At the end of the session all in attendance (presenters and visitors) were asked to cast a vote for the best poster. With over 20 votes cast, Carol Perkins and Chris Chirgwin were tied for first. Carol works at the IOL and her poster introduced work on securing the nation’s power infrastructure. Chris works with John LaCourse and Paula McWilliam, and his poster introduced work on a force-sensing laryngoscope. Here are Carol and Chris with the winning posters:

You can see more photos from this event on Flickr.

 

Video calling while driving? Not a good idea.

Do you own a smart phone? If yes, you’re likely to have tried video calling (e.g. with Skype or FaceTime). Video calling is an exciting technology, but as Zeljko Medenica and I show in our CHI 2012 Work-in-Progress paper [1], it’s not a technology you should use while driving.

Zeljko and I conducted a driving simulator experiment in which a driver and another participant were given the verbal task of playing the game of Taboo. The driver and the passenger were in separate rooms and spoke to each other over headsets. In one experimental condition, the driver and the other participant could also see each other as shown in the figure below. We wanted to find out if in this condition drivers would spend a significant amount of time looking at the other participant. This is an important question, as time spent looking at the other participant is time not spent looking at the road ahead!

We found that, when drivers felt that the driving task was demanding, they focused on the road ahead. However, when they perceived the driving task to be less demanding they looked at the other participant significantly more.

What this tells us is that, under certain circumstances, drivers are willing to engage in video calls. This is due, at least in part, to the (western) social norm of looking at the person you’re talking to. These results should serve as a warning to interface designers, lawmakers (yes, there’s concern [2]), transportation officials, and drivers that video calling can be a serious distraction from driving.

Here’s a video that introduces the experiment in more detail:

References

[1] Andrew L. Kun, Zeljko Medenica, “Video Call, or Not, that is the Question,” to appear in CHI ’12 Extended Abstracts

[2] Claude Brodesser-Akner, “State Assemblyman: Ban iPhone4 Video-Calling From the Road,” New York Magazine. Date accessed 03/02/2012

Estimating cognitive load using pupillometry: paper accepted to ETRA 2010

Our short paper [1] on using changes in pupil size diameter to estimate cognitive load was accepted to the Eye Tracking Research and Applications 2010 (ETRA 2010) conference. The lead author is Oszkar Palinko and the co-authors are my PhD student Alex Shyrokov, my OHSU collaborator Peter Heeman and me.

In previous experiments in our lab we have concentrated on performance measures to evaluate the effects of secondary tasks on the driver. Secondary tasks are those performed in addition to driving, e.g. interacting with a personal navigation device. However, as Jackson Beatty has shown, when people’s cognitive load increases their pupils dilate  [2]. This fascinating phenomenon provides a physiological measure of cognitive load. Why is it important to have multiple measures of cognitive load? As Christopher Wickens points out [3] this allows us to avoid circular arguments such as “… saying that a task interferes more because of its higher resource demand, and its resource demand is inferred to be higher because of its greater interference.”

We found that in a driving simulator-based experiment that was conducted by Alex, performance-based and pupillometry-based (that is a physiological) cognitive load measures show high correspondence for tasks that lasted tens of seconds. In other words, both driving performance measures and pupil size changes appear to track cognitive load changes. In the experiment the driver is involved in two spoken tasks in addition to the manual-visual task of driving. We hypothesize that different parts of these two spoken tasks present different levels of cognitive load for the driver. Our measurements of driving performance and pupil diameter changes appear to confirm the hypothesis. Additionally, we introduced a new pupillometry-based cognitive load measure that shows promise for tracking changes in cognitive load on time scales of several seconds.

In Alex’s experiment one of the spoken tasks required participants to ask and answer yes/no questions. We hypothesize that different phases of this task also present different levels of cognitive load to the driver. Will this be evident in driving performance and pupillometric data? We hope to find out soon!

References

[1] Oskar Palinko, Andrew L. Kun, Alexander Shyrokov, Peter Heeman, “Estimating Cognitive Load Using Remote Eye Tracking in a Driving Simulator,” ETRA 2010

[2] Jackson Beatty, “Task-evoked pupillary responses, processing load, and the structure of processing resources,” Psychological Bulletin. Vol. 91(2), Mar 1982, 276-292

[3] Christopher D. Wickens, “Multiple resources and performance prediction,” Theoretical Issues in Ergonomic Science, 2002, Vol. 3, No. 2, 159-177

Two posters at Ubicomp 2009

Our group presented two posters at last week’s Ubicomp 2009. Oskar Palinko and Michael Litchfield were on hand to talk about our multitouch table effort[1] (a great deal of work for this poster was done by Ankit Singh). Zeljko Medenica introduced a driving simulator pilot, work done in collaboation wtih Tim Paek, that deals with using augmented reality for the user interface of a navigation device [2].

Oskar (center) and Mike (right)

Oskar (center) and Mike (right)

Zeljko (center)

Zeljko (center)

Oskar, Mike and I are working on expanding the multitouch study. We plan to start with an online study in which subjects will watch two videos, one in which a story is presented using the multitouch table and another with the same story presented using a simple slide show. Zeljko will head up the follow-on to the pilot study – take a look at the video below to see (roughly) what we’re planning to do.

Take a look at other pictures I took at Ubicomp 2009 on Flickr.

References

[1] Oskar Palinko, Ankit Singh, Michael A. Farrar, Michael Litchfield, Andrew L. Kun, “Towards Storytelling with Geotagged Photos on a Multitouch Display,” Conference Supplement, Ubicomp 2009

[2] Zeljko Medenica, Oskar Palinko, Andrew L. Kun, Tim Paek, “Exploring In-Car Augmented Reality Navigation Aids: A Pilot Study,” Conference Supplement, Ubicomp 2009